

Nano-engineered catalyst for the utilization of CO₂ in dry reforming to produce syngas DOE Contract No. DE-FE0029760

Shiguang Li, *Gas Technology Institute (GTI)* Xinhua Liang, *Missouri University of Science and Technology (Missouri S&T)*

Project overview

- **Performance period**: July 1, 2017 June 30, 2020
- **Funding**: \$799,807 DOE (\$200,000 co-funding), three year effort
- **Objectives**: Develop nano-engineered catalyst supported on highsurface-area ceramic hollow fibers for the utilization of CO_2 in dry reforming of methane ($CO_2 + CH_4 \rightarrow 2 H_2 + 2 CO$) to produce syngas

Team:

Member	Roles
gti.	 Project management and planning Quality control, reactor design and testing Techno-Economic Analysis (TEA) and life cycle analysis (LCA)
MISSOURI	 Catalyst development and testing

Introduction to GTI and MS&T

gti

- <u>Not-for-profit</u> research company, providing energy and natural gas solutions to the industry since 1941
- Facilities: 18 acre campus near Chicago, 28 specialized labs

- <u>Co-educational research</u> <u>university</u> located in Rolla, Missouri
- Prof. Liang Group: expertise in atomic layer deposition thin film coatings, catalyst synthesis and testing

Process description

Dry reforming of methane using CO₂

- CH₄ + CO₂ → 2H₂ + 2CO with H₂/CO ratio <1 due to the reverse water-gas shift reaction (CO₂ + H₂ ≓ CO + H₂O)
 - Different from methane steam reforming $(CH_4 + H_2O \rightarrow CO + 3 H_2)$ where H_2/CO ratio >3 due to water-gas shift reaction $(CO + H_2O \rightleftharpoons CO_2 + H_2)$
- H₂/CO ratio can be adjusted by blending with products from steam reforming
- Typical catalysts:
 - Precious metals (Pt, Rh, Ru): expensive
 - Low-cost Ni: issue of sintering of the Ni particles

Nano-engineered Ni catalyst prepared by atomic layer deposition (ALD) may resolve sintering issue

X-ray photoelectron spectroscopy (XPS) analysis

Z. Shang, et al., Applied Catalysis B: Environmental, 2017, 201, 302-309

gti

TEM image of γ-Al₂O₃ supported Ni catalysts

- Particle size: 2-6 nm, average 3.6 nm
 - Particles prepared by traditional methods are ~10-20 nm

Advantages over traditional catalysts prepared by incipient wetness (IW)

 <u>Higher activity</u> due to highly dispersed nanoparticles: ~3.6 nm Ni particles compared to ~10-20 nm particles prepared by traditional method

Catalyst	CH₄ reforming rate (L⋅h ⁻¹ gNi ⁻¹)			H ₂ /CO ratio in the product		
	850°C	800°C	750°C	850°C	800°C	750°C
ALD	1840	1740	1320	0.82	0.78	0.68
IW	1700	1150	480	0.70	0.61	0.51

 <u>Better stability</u> due to strong bonding between nanoparticles and substrates since the particles are chemically bonded to the substrate during ALD

Novel α-Al₂O₃ hollow fiber with high packing density is being used as catalyst substrate in current project

Commercial substrates

Catalyst Geometry	SA/V (m²/m³)
1-hole	1,151
1-hole-6-grooves	1,733
4-hole	1,703
10-hole	2,013
Monolith	1,300
4-channel ceramic hollow fibers	3,000

Novel α -Al₂O₃ hollow fibers

- Four channels, 35 cm long
- OD of 3.2 mm and a channel inner diameter of 1.1 mm
- Geometric surface area to volume as high as 3,000 m²/m³
- Currently being tested in a packed bed reactor with catalyst supported on ~2-cm long fibers

In addition to packed bed reactor, a pressure-driven transport reactor will be designed and tested

Overview/roadmap

Task 1: Project management and planning (throughout the project)

Key milestones and success criteria

Budget Period	Key Milestones	Planned Completion Date
1	CH ₄ conversion >90%, H ₂ /CO ratio of 0.7-0.85, and CH ₄ reforming rate >2,200 L/h/g _{Ni} at 800°C and pressure of 15-25 psia	03/31/18
1	Hollow fiber supported catalyst shows CH_4 conversion >95%, H_2/CO ratio of 0.7-0.85, and CH_4 reforming rate >2,300 L/h/g _{Ni} at 800 °C and 15-25 psia	12/31/18
1	200 hours testing shows CH_4 conversion decrease less than 20% at 800°C and pressure of 15-25 psia	12/31/18
2	Reactor shows CH ₄ conversion >95%, H ₂ /CO ratio of 0.7-0.85, and CH ₄ reforming rate >2,200-2,500 L/h/g _{Ni} at 800°C	09/30/19
2	200 hours testing shows CH ₄ conversion decrease less than 10% at 800°C	06/30/20
2	Issue topical report on TEA and LCA	06/30/20

Decision Point	Date	Success Criteria
Go/no-go decision points	12/31/18	 Fiber supported catalyst shows CH₄ conversion >95%, H₂/CO ratio of 0.7- 0.85, and CH₄ reforming rate >2,300 L/h/g_{Ni} at 800 °C and 15-25 psia 200 hours testing shows CH₄ conversion decrease less than 20% at 800°C and 15-25 psia
Completion of the project	6/30/20	 Catalytic reactor shows CH₄ conversion >95%, H₂/CO ratio of 0.7-0.85, and CH₄ reforming rate >2,200-2,500 L/h/g_{Ni} at 800°C 200 hours testing shows conversion decrease less than 10% at 800°C

Preliminary risk assessment: technical challenges and mitigation strategies

Challenges/Risks

1) Longer-term stability of catalyst <u>Mitigation</u>:

- 1a: Address any issues observed during a 200-hour testing
- 1b: Develop a catalyst regeneration process

2) Catalytic reactor sealing/potting <u>Mitigation</u>:

- 2a: Use advanced potting materials
- 2b: Leave the potting ends in a lower temperature zone

3) Pressure-driven transport configuration not as good as expected <u>Mitigation</u>:

• 3a: Alternate designs

14

Consequence

Equipment for catalyst development and testing

Horizontal ALD reactor at Missouri S&T

Packed bed catalytic reactor at Missouri S&T

Catalytic reactor at GTI

Preliminary results: ALD Ni/ α -Al₂O₃ hollow fiber shows higher CH₄ reforming rate than ALD Ni/ γ -Al₂O₃

- Nickel nanoparticles successfully deposited on $\alpha\text{-Al}_2\text{O}_3$ hollow fibers by ALD
- Dry reforming performance:

Catalyst	CH ₄ reforming rate (L-h ⁻¹ gNi ⁻¹)				
	850°C	800°C	750°C	700°C	
ALD Ni/ γ -Al ₂ O ₃ porous particles	1840	1740	1320	720	
ALD Ni/ α -Al ₂ O ₃ hollow fiber	1970	2040	1770	980	

Summary

- We are developing ALD nano-engineered catalysts for utilization of CO₂ in dry reforming of methane to produce syngas
- ALD nano-engineered catalyst improves catalytic activity and stability
- Novel α-Al₂O₃ hollow fiber increases surface area, and enables pressure-driven transport reactor configuration
- Preliminary study indicated that Ni catalyst supported on α-Al₂O₃ hollow fiber had higher reforming rate than that on the γ-Al₂O₃ porous particles

Catalyst	CH₄ reforming rate (L⋅h⁻¹gNi⁻¹)				
	850°C	800°C	750°C	700°C	
ALD Ni/ γ -Al $_2O_3$ porous particles	1840	1740	1320	720	
ALD Ni/ α -Al $_2O_3$ hollow fiber	1970	2040	1770	980	

Financial and technical support

DE-FE0029760

NETL Project Manager Bruce Lani

